An approximation method for numerical solution of multi-dimensional feedback delay fractional optimal control problems by Bernstein polynomials
نویسندگان
چکیده
In this paper, we present a new method for solving fractional optimal control problems with delays in state and control. This method is based upon Bernstein polynomials basis and feedback control. The main advantage of feedback or closed-loop control is that one can monitor the effect of such control on the system and modify the output accordingly. In this work, we use Bernstein polynomials to transform the fractional time-varying multidimensional optimal control system with both state and control delays, into an algabric system in terms of the Bernstein coefficients approximating state and control functions. We use Caputo derivative of degree 0 < α ≤ 1 as the fractional derivative in our work. Finally, some numerical examples are given to illustrate the effectiveness of this method.
منابع مشابه
Numerical solution of the spread of infectious diseases mathematical model based on shifted Bernstein polynomials
The Volterra delay integral equations have numerous applications in various branches of science, including biology, ecology, physics and modeling of engineering and natural sciences. In many cases, it is difficult to obtain analytical solutions of these equations. So, numerical methods as an efficient approximation method for solving Volterra delay integral equations are of interest to many res...
متن کاملNew operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative
In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...
متن کاملSolution of Fractional Optimal Control Problems with Noise Function Using the Bernstein Functions
This paper presents a numerical solution of a class of fractional optimal control problems (FOCPs) in a bounded domain having a noise function by the spectral Ritz method. The Bernstein polynomials with the fractional operational matrix are applied to approximate the unknown functions. By substituting these estimated functions into the cost functional, an unconstrained nonlinear optimizat...
متن کاملNumerical Solution of Delay Fractional Optimal Control Problems using Modification of Hat Functions
In this paper, we consider the numerical solution of a class of delay fractional optimal control problems using modification of hat functions. First, we introduce the fractional calculus and modification of hat functions. Fractional integral is considered in the sense of Riemann-Liouville and fractional derivative is considered in the sense of Caputo. Then, operational matrix of fractional inte...
متن کاملThe Numerical Solution of Some Optimal Control Systems with Constant and Pantograph Delays via Bernstein Polynomials
In this paper, we present a numerical method based on Bernstein polynomials to solve optimal control systems with constant and pantograph delays. Constant or pantograph delays may appear in state-control or both. We derive delay operational matrix and pantograph operational matrix for Bernstein polynomials then, these are utilized to reduce the solution of optimal control with constant...
متن کامل